

4.0 kV rms/6.0 kV rms Penta-Channel Digital Isolators

Data Sheet

 $\pi 150/\pi 151/\pi 152$

FEATURES

Ultra low power consumption:

0.38mA/Ch (0~500Kbps, Supply voltage: 3.0~5.5V)

High data rate: π 15xA: 600Mbps

 π 15xM: 10Mbps π 15xU: 150kbps

High common-mode transient immunity: 45 kV/μs typical

High robustness to radiated and conducted noise

Low propagation delay:

4.4 ns maximum for 5 V operation5.2 ns maximum for 3.3 V operation

Isolation voltages:

 π 15xx4: AC 4000Vrms π 15xx6: AC 6000Vrms

Safety and regulatory approvals (Pending)

UL recognition:

4000Vrms/6000Vrms for 1 minute per UL 1577

CSA Component Acceptance Notice 5A

VDE certificate of conformity

DIN V VDE V 0884-10 (VDE V 0884-10):2006-12

V_{IORM} = 565V peak/849V peak

CQC certification per GB4943.1-2011

3.0 V to 5.5 V level translation

AEC-Q100 qualification

Wide temperature range: -40°C to 125°C 16-lead, RoHS-compliant, (W)SOIC package Unused input pin should be connected to default

APPLICATIONS

General-purpose multichannel isolation Industrial field bus isolation

GENERAL DESCRIPTION

The $\pi 1 xxx$ are 2PaiSemi digital isolators product family. By using maturated standard semiconductor CMOS technology and innovative design, these isolation components provide outstanding performance characteristics superior to alternatives such as optocoupler devices and other integrated isolators. The maximum propagation delay is 3.6 ns with a pulse width distortion of less than 0.3 ns at 5.0V operation. Channel matching is tight at 0.4 ns maximum. The $\pi 1 xxx$ isolator data channels are independent and are available in a variety of configurations with a withstand voltage rating of 4.0 kV rms to 8.0 kV rms and the data rate from 150Kbps up to 600Mbps (see the Ordering Guide). The devices operate with the supply voltage on either side ranging from 3.0 V to

FUNCTIONAL BLOCK DIAGRAMS

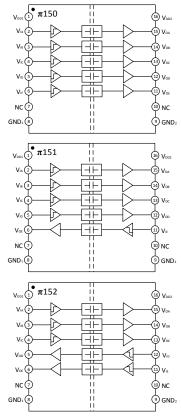


Figure 1. π 150/ π 151/ π 152 functional Block Diagram

5.5 V, providing compatibility with lower voltage systems as well as enabling voltage translation functionality across the isolation barrier.

The fail-safe state is available in which the outputs transition to a preset state when the input power supply is not applied.

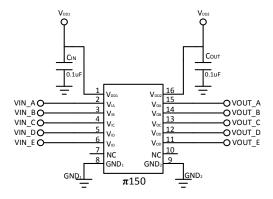


Figure 2. π 150 typical Application Circuit

http://www.rpsemi.com/

SPECIFICATIONS

ELECTRICAL CHARACTERISTICS—5 V OPERATION

All typical specifications are at $T_A = 25^{\circ}C$, $V_{DD1} = V_{DD2} = 5$ V. Minimum/maximum specifications apply over the entire recommended operation range of 4.5 V \leq V_{DD1} \leq 5.5 V, 4.5 V \leq V_{DD2} \leq 5.5 V, and $-40^{\circ}C \leq$ $T_A \leq +125^{\circ}C$, unless otherwise noted. Switching specifications are tested with $C_L = 15$ pF and CMOS signal levels, unless otherwise noted. Supply currents are specified with 50% duty cycle signals and $C_L = 0$ pF.

Table 1.

Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions/Comments
SWITCHING SPECIFICATIONS						
π15xA						
Pulse Width	PW			1.6	ns	Within pulse width distortion (PWD) limit
Max Data Rate		600			Mbps	Within PWD limit
π15xM						
Pulse Width	PW			100	ns	Within pulse width distortion (PWD) limit
Max Data Rate		10			Mbps	Within PWD limit
$\pi 15 \text{xU}$						
Pulse Width	PW			6.6	μs	Within pulse width distortion (PWD) limit
Max Data Rate		150			Kbps	Within PWD limit
Propagation Delay	tphl, tplh	2.6	3.6	4.6	ns	50% input to 50% output
Pulse Width Distortion	PWD	0	0.3	0.4	ns	tPLH - tPHL
Change vs. Temperature			1.5		ps/°C	
Propagation Delay Skew	t PSK			0.5	ns	Between any two units at the same
						temperature, voltage, and load
Channel Matching						
Codirectional	t PSKCD		0	0.4	ns	
Opposing Direction	t PSKOD		0	0.4	ns	
Jitter			50		ps p-p	See the Jitter Measurement section
			8		ps rms	See the Jitter Measurement section
DC SPECIFICATIONS						
Input Threshold Voltage						
Logic High	V_{IH}			3.6	V	
Logic Low	V_{IL}	1.4			V	
Output Voltage						
Logic High	Vон	V _{DDx} - 0.1	V_{DDx}		V	$I_{Ox}^{1} = -20 \mu A, V_{Ix} = V_{IxH}^{2}$
		V _{DDx} - 0.2	V_{DDx}		V	$I_{Ox}^{1} = -4 \text{ mA}, V_{Ix} = V_{IxH}^{2}$
Logic Low	Vol		0.0	0.1	V	$I_{Ox}^{1} = 20 \mu A, V_{Ix} = V_{IxL}^{3}$
			0.1	0.2	V	$I_{Ox}^{1} = 4 \text{ mA}, V_{Ix} = V_{IxL}^{3}$
Input Current per Channel	I	-10	+0.01	+10	μΑ	$0 \text{ V} \leq V_{lx} \leq V_{DDx}$
Quiescent Supply Current						C _L = 0 pF
$\pi 150$	I _{DD1} (Q)	68	85	102	μΑ	$V_1^4 = 0$ (N0), 1 (N1) ⁵
	I _{DD2} (Q)	472	590	708	μΑ	$V_1^4 = 0$ (N0), 1 (N1) ⁵
	I _{DD1} (Q)	68	85	102	μΑ	$V_1^4 = 1$ (N0), 0 (N1) ⁵
	I _{DD2} (Q)	477	597	717	μΑ	$V_1^4 = 1$ (N0), 0 (N1) ⁵

Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions/Comments
π151	IDD1 (Q)	269	337	405	μΑ	$V_1^4 = 0$ (N0), 1 (N1) ⁵
	IDD2 (Q)	280	351	422	μΑ	$V_1^4 = 0$ (N0), 1 (N1) ⁵
	IDD1 (Q)	265	332	399	μΑ	$V_1^4 = 1 \text{ (N0), 0 (N1)}^5$
	IDD2 (Q)	269	337	405	μΑ	$V_1^4 = 1$ (NO), O (N1) ⁵
$\pi 152$	I _{DD1} (Q)	269	337	405	μΑ	$V_1^4 = 0$ (N0), 1 (N1) ⁵
	IDD2 (Q)	280	351	422	μΑ	$V_1^4 = 0$ (N0), 1 (N1) ⁵
	I _{DD1} (Q)	265	332	399	μΑ	$V_1^4 = 1$ (N0), 0 (N1) ⁵
	IDD2 (Q)	269	337	405	μΑ	$V_1^4 = 1$ (N0), 0 (N1) ⁵
Dynamic Supply Current						C_L = 0 pF
Dynamic Input	Iddi (d)	10	13	16	μΑ /Mbps	Inputs switching, 50% duty cycle
Dynamic Output	Iddo (d)	117	147	177	μΑ /Mbps	Inputs switching, 50% duty cycle
Under voltage Lockout	UVLO					
Positive V _{DDx} Threshold	V _{DDxUV+}	2.35	2.62	2.88	V	
Negative V _{DDx} Threshold	V _{DDxUV} -	2.17	2.42	2.66	V	
V _{DDx} Hysteresis	V _{DDxUVH}	0.17	0.19	0.20	V	
AC SPECIFICATIONS						
Output Rise/Fall Time	t _R /t _F		0.7		ns	10% to 90%
Common-Mode Transient	CM _H		45		kV/μs	$V_{Ix} = V_{DDx}, V_{CM} = 1000 V,$
Immunity ⁶						transient magnitude = 800 V
	CM _L		45		kV/μs	$V_{Ix} = 0 \text{ V, } V_{CM} = 1000 \text{ V,}$
						transient magnitude = 800 V

Notes:

Table 2. Total Supply Current vs. Data Throughput (C_L = 0 pF)

			150 Kb	ps		10 Mbp	s		150 Mb	ps	
Parameter	Symbol	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
SUPPLY CURRENT											
π150A											
Supply Current Side 1	I _{DD1}										mA
Supply Current Side 2	I _{DD2}										mA
π151Α											
Supply Current Side 1	I _{DD1}										mA
Supply Current Side 2	I _{DD2}										mA
π152A											
Supply Current Side 1	I _{DD1}										mA
Supply Current Side 2	I _{DD2}										mA

 $^{^{1}}$ I_{Ox} is the Channel x output current, where x = A, B, C, D or E.

 $^{^2\,}V_{\text{IxH}}$ is the input side logic high voltage.

 $^{^3\,}V_{lxL}$ is the input side logic low voltage.

 $^{^4\,\}mbox{V}_{\mbox{\scriptsize I}}$ is the input voltage.

 $^{^5\,}N0 \text{ is the } \pi150 \times x0/\pi151 \times x0/\pi152 \times x0 \text{ models, and } N1 \text{ is the } \pi150 \times x1/\pi151 \times x1/\pi152 \times x1 \text{ models. See the Ordering Guide.}$

 $^{^6}$ | CM_H| is the maximum common-mode voltage slew rate that can be sustained while maintaining the voltage output V_O > 0.8 V_{DDx}. |CM_L| is the maximum common-mode voltage slew rate that can be sustained while maintaining V_O > 0.8 V. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges.

			150 Kb	ps		10 Mbp	s				
Parameter	Symbol	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
SUPPLY CURRENT											
$\pi 150 M$											
Supply Current Side 1	I _{DD1}										mA
Supply Current Side 2	I _{DD2}										mA
π151M											
Supply Current Side 1	I _{DD1}										mA
Supply Current Side 2	I _{DD2}										mA
π152M											
Supply Current Side 1	I _{DD1}										mA
Supply Current Side 2	I _{DD2}										mA
SUPPLY CURRENT											
$\pi 150 \mathrm{U}$											
Supply Current Side 1	I _{DD1}										μΑ
Supply Current Side 2	I _{DD2}										μΑ
π151U											
Supply Current Side 1	I _{DD1}										μΑ
Supply Current Side 2	I _{DD2}										μΑ
π152U											
Supply Current Side 1	I _{DD1}										μΑ
Supply Current Side 2	I _{DD2}										μΑ

ELECTRICAL CHARACTERISTICS—3.3 V OPERATION.

All typical specifications are at $T_A = 25^{\circ}C$, $V_{DD1} = V_{DD2} = 3.3$ V. Minimum/maximum specifications apply over the entire recommended operation range: $3.0 \text{ V} \leq V_{DD1} \leq 3.6 \text{ V}$, $3.0 \text{ V} \leq V_{DD2} \leq 3.6 \text{ V}$, and $-40^{\circ}C \leq T_A \leq +125^{\circ}C$, unless otherwise noted. Switching specifications are tested with $C_L = 15$ pF and CMOS signal levels, unless otherwise noted. Supply currents are specified with 50% duty cycle signals and $C_L = 0$ pF.

Table 3.

Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions/Comments
SWITCHING SPECIFICATIONS						
$\pi 15 xA$						
Pulse Width	PW			1.6	ns	Within pulse width distortion (PWD) limit
Max Data Rate		600			Mbps	Within PWD limit
$\pi 15 \text{xM}$						
Pulse Width	PW			100	ns	Within pulse width distortion (PWD) limit
Max Data Rate		10			Mbps	Within PWD limit
$\pi 15 xU$						
Pulse Width	PW			6.6	μs	Within pulse width distortion (PWD) limit
Max Data Rate		150			Kbps	Within PWD limit
Propagation Delay	tphl, tplh	3.4	4.4	5.4	ns	50% input to 50% output
Pulse Width Distortion	PWD	0	0.32	0.39	ns	tPLH - tPHL
Change vs. Temperature			1.5		ps/°C	
Propagation Delay Skew	t PSK			0.5	ns	Between any two units at the same
						temperature, voltage, and load
Channel Matching						
Codirectional	t PSKCD		0	0.4	ns	
Opposing Direction	t PSKOD		0	0.4	ns	
Jitter			66		ps p-p	See the Jitter Measurement section
			11		ps rms	See the Jitter Measurement section
DC SPECIFICATIONS						
Input Threshold Voltage						
Logic High	V _{IH}			2.4	V	
Logic Low	V _{IL}	0.9			V	
Output Voltage						
Logic High	Vон	V _{DDx} - 0.1	V_{DDx}		V	$I_{Ox}^1 = -20 \mu A$, $V_{Ix} = V_{IxH}^2$
		V _{DDx} - 0.2	V_{DDx}		V	$I_{Ox}^{1} = -2 \text{ mA, } V_{Ix} = V_{IxH}^{2}$
Logic Low	Vol		0.0	0.1	V	$I_{Ox}^{1} = 20 \mu A, V_{Ix} = V_{IxL}^{3}$
			0.1	0.2	V	$I_{Ox}^1 = 2 \text{ mA}, V_{Ix} = V_{IxL}^3$
Input Current per Channel	I ₁	-10	+0.01	+10	μΑ	$0 \text{ V} \leq V_{lx} \leq V_{DDx}$
Quiescent Supply Current						$C_{\rm L}$ = 0 pF
$\pi 150$	I _{DD1} (Q)	67	84	101	μΑ	$V_1^4 = 0$ (N0), 1 (N1) ⁵
	I _{DD2} (Q)	484	605	726	μΑ	$V_1^4 = 0$ (N0), 1 (N1) ⁵
	I _{DD1} (Q)	67	84	101	μΑ	$V_1^4 = 1 \text{ (N0), 0 (N1)}^5$
	I _{DD2} (Q)	488	610	732	μA	$V_1^4 = 1 \text{ (N0), 0 (N1)}^5$
	.552 (0,)	1.00	310	, 52	١ ٣٠٠	

Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions/Comments
π151	I _{DD1} (Q)	274	343	412	μΑ	$V_1^4 = 0$ (N0), 1 (N1) ⁵
	I _{DD2} (Q)	284	355	426	μΑ	$V_1^4 = 0$ (N0), 1 (N1) ⁵
	IDD1 (Q)	272	340	408	μΑ	$V_1^4 = 1$ (N0), 0 (N1) ⁵
	I _{DD2} (Q)	276	346	416	μΑ	$V_1^4 = 1$ (N0), 0 (N1) ⁵
$\pi 152$	I _{DD1} (Q)	274	343	412	μΑ	$V_1^4 = 0$ (N0), 1 (N1) ⁵
	I _{DD2} (Q)	284	355	426	μΑ	$V_1^4 = 0$ (N0), 1 (N1) ⁵
	I _{DD1} (Q)	272	340	408	μΑ	$V_1^4 = 1$ (NO), O (N1) ⁵
	I _{DD2} (Q)	276	346	416	μΑ	$V_1^4 = 1$ (NO), 0 (N1) ⁵
Dynamic Supply Current						C _L = 0 pF
Dynamic Input	Iddi (d)		8		μΑ /Mbps	Inputs switching, 50% duty cycle
Dynamic Output	Iddo (d)		53		μΑ /Mbps	Inputs switching, 50% duty cycle
Undervoltage Lockout	UVLO					
Positive V _{DDx} Threshold	V _{DDxUV+}	2.35	2.62	2.88	V	
Negative V _{DDx} Threshold	V _{DDxUV} -	2.17	2.42	2.66	V	
V _{DDx} Hysteresis	VDDxUVH	0.17	0.19	0.20	V	
AC SPECIFICATIONS						
Output Rise/Fall Time	t _R /t _F		0.7		ns	10% to 90%
Common-Mode Transient Immunity ⁶	CM _H		45		kV/μs	$V_{Ix} = V_{DDx}$, $V_{CM} = 1000 \text{ V}$, transient magnitude = 800 V
illinumcy	CM _L		45		kV/μs	$V_{lx} = 0 \text{ V}, V_{CM} = 1000 \text{ V}, \text{ transient}$ magnitude = 800 V

Notes:

Table 4. Total Supply Current vs. Data Throughput ($C_L = 0 pF$)

			150 Kb	ps		10 Mbp	s		150 Mb	ps	
Parameter	Symbol	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
SUPPLY CURRENT											
$\pi 150A$											
Supply Current Side 1	I _{DD1}										mA
Supply Current Side 2	I _{DD2}										mA
π151A											
Supply Current Side 1	I _{DD1}										mA
Supply Current Side 2	I _{DD2}										mA
π 152A											
Supply Current Side 1	I _{DD1}										mA
Supply Current Side 2	I _{DD2}										mA

 $^{^{1}}$ I_{Ox} is the Channel x output current, where x = A, B, C, D or E.

 $^{^2\,}V_{lxH}$ is the input side logic high voltage.

 $^{^3\,}V_{lxL}$ is the input side logic low voltage.

 $^{^4\,}V_I$ is the input voltage.

 $^{^5}$ N0 is the $\pi150xx0/\pi151xx0/\pi152xx0$ models, and N1 is the $\pi150xx1/\pi151xx1/\pi152xx1$ models. See the Ordering Guide.

 $^{^6}$ |CM_H| is the maximum common-mode voltage slew rate that can be sustained while maintaining $V_O > 0.8 \, V_{DDx}$. |CM_L| is the maximum common-mode voltage slew rate that can be sustained while maintaining $V_O > 0.8 \, V$. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges.

			150 Kb	ps		10 Mbp)S				
Parameter	Symbol	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
SUPPLY CURRENT											
$\pi 150M$											
Supply Current Side 1	I _{DD1}										mA
Supply Current Side 2	I _{DD2}										mA
π151M											
Supply Current Side 1	I _{DD1}										mA
Supply Current Side 2	I _{DD2}										mA
π152M											
Supply Current Side 1	I _{DD1}										mA
Supply Current Side 2	I _{DD2}										mA
SUPPLY CURRENT											
$\pi 150 \mathrm{U}$											
Supply Current Side 1	I _{DD1}										μΑ
Supply Current Side 2	I _{DD2}										μΑ
$\pi 151 \mathrm{U}$											
Supply Current Side 1	I _{DD1}										μΑ
Supply Current Side 2	I _{DD2}										μΑ
$\pi 152U$											
Supply Current Side 1	I _{DD1}										μΑ
Supply Current Side 2	I _{DD2}										μΑ

INSULATION AND SAFETY RELATED SPECIFICATIONS

Table 5. π15xx4

Parameter	Symbol	Value	Unit	Test Conditions/Comments
Rated Dielectric Insulation Voltage		4000	V rms	1-minute duration
Minimum External Air Gap (Clearance)	L (I01)	4.0	mm min	Measured from input terminals to output terminals, shortest distance through air
Minimum External Tracking (Creepage)	L (102)	4.0	mm min	Measured from input terminals to output terminals, shortest distance path along body
Minimum Clearance in the Plane of the Printed Circuit Board (PCB Clearance)	L (PCB)	4.5	mm min	Measured from input terminals to output terminals, shortest distance through air, line of sight, in the PCB mounting plane
Minimum Internal Gap (Internal Clearance)		8	μm min	Insulation distance through insulation
Tracking Resistance (Comparative Tracking Index)	CTI	>400	V	DIN IEC 112/VDE 0303 Part 1
Material Group		П		Material Group (DIN VDE 0110, 1/89, Table 1)

$\pi 15xx6$

Parameter	Symbol	Value	Unit	Test Conditions/Comments
Rated Dielectric Insulation Voltage		6000	V rms	1-minute duration
Minimum External Air Gap (Clearance)	L (101)	8.3	mm min	Measured from input terminals to output terminals,
				shortest distance through air
Minimum External Tracking (Creepage)	L (102)	8.3	mm min	Measured from input terminals to output terminals,
				shortest distance path along body
Minimum Clearance in the Plane of the Printed	L (PCB)	8.3	mm min	Measured from input terminals to output terminals,
Circuit Board (PCB Clearance)				shortest distance through air, line of sight, in the PCB
				mounting plane
Minimum Internal Gap (Internal Clearance)		14	μm min	Insulation distance through insulation
Tracking Resistance (Comparative Tracking Index)	СТІ	>400	V	DIN IEC 112/VDE 0303 Part 1
Material Group		II		Material Group (DIN VDE 0110, 1/89, Table 1)

PACKAGE CHARACTERISTICS

Table 6. π12xx4

Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions/Comments
Resistance (Input to Output) ¹	R _{I-O}		10^{13}		Ω	
Capacitance (Input to Output) ¹	Cı-o		0.6		pF	f = 400Hz
Input Capacitance ²	Cı		3.0		рF	
IC Junction to Ambient Thermal Resistance	θ JA		76		°C/W	Thermocouple located at center of package underside

Notes:

$\pi 12xx6$

Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions/Comments
Resistance (Input to Output) ¹	R _{I-O}		10^{13}		Ω	
Capacitance (Input to Output) ¹	C _{I-O}		0.6		pF	f = 400Hz
Input Capacitance ²	Cı		3.0		рF	
IC Junction to Ambient Thermal Resistance	θ JA		45		°C/W	Thermocouple located at center of package underside

Notes:

REGULATORY INFORMATION

See Table 10 and the Insulation Lifetime section for details regarding recommended maximum working voltages for specific cross isolation waveforms and insulation levels.

Table7. π15xx4

UL (Pending)	ng) CSA (Pending) VDE (Pending)		CQC (Pending)	
Recognized under UL 1577	Approved under CSA Component	DIN V VDE V 0884-10 (VDE V	Certified under	
Component Recognition	Acceptance Notice 5A	0884-10):2006-122	CQC11-471543-2012	
Program ¹				

¹The device is considered a 2-terminal device: Pin 1 through Pin 8 are shorted together, and Pin 9 through Pin 16 are shorted together.

 $^{^2\}mbox{Input}$ capacitance is from any input data pin to ground.

¹The device is considered a 2-terminal device: Pin 1 through Pin 8 are shorted together, and Pin 9 through Pin 16 are shorted together.

²Input capacitance is from any input data pin to ground.

Single Protection, 4000 V rms Isolation Voltage	CSA 60950-1-07+A1+A2 and IEC 60950-1, second edition,	Basic insulation, V _{IORM} = 565 V peak, V _{IOSM} = 4615 V peak	GB4943.1-2011
	+A1+A2:		
	Basic insulation at 400 V rms (565		Basic insulation at 770 V rms
	V peak)		(1089 V peak) working voltage
	Reinforced insulation at 200 V rms		Reinforced insulation at
	(283 V peak)		385 V rms (545 V peak)
	IEC 60601-1 Edition 3.1:		
	Basic insulation (1 MOPP), 250 V rms		
	(354 V peak)		
	CSA 61010-1-12 and IEC 61010-1 third edition		
	Basic insulation at 300 V rms mains, 400 V rms (565 V peak)		
	Reinforced insulation at 300 V rms		
	mains, 200 V secondary (283 V peak)		
File (pending)	File (pending)	File (pending)	File (pending)

Notes:

$\pi 15xx6$

UL (Pending)	CSA (Pending)	VDE (Pending)	CQC (Pending)
Recognized under UL 1577	Approved under CSA Component	DIN V VDE V 0884-10 (VDE V	Certified under
Component Recognition	Acceptance Notice 5A	0884-10):2006-12 ²	CQC11-471543-2012
Program ¹			
Single Protection, 6000 V rms	CSA 60950-1-07+A1+A2 and	Basic insulation, V _{IORM} = 849	GB4943.1-2011
Isolation Voltage	IEC 60950-1, second edition,	V peak, V _{IOSM} = 7692 V peak	
	+A1+A2:	Reinforced insulation, V _{IORM}	
		=849 V peak, V _{IOSM} = 10 kV	
		peak	
	Basic insulation at 830 V rms		Basic insulation at 830 V rms
	(1174 V peak)		(1174 V peak) working voltage
	Reinforced insulation at 415 V rms		Reinforced insulation at
	(587 V peak)		415 V rms (587 V peak)
	IEC 60601-1 Edition 3.1:		
	Basic insulation (2 MOPP), 261 V rms		
	(369 V peak)		
	CSA 61010-1-12 and IEC 61010-1		
	third edition		
	Basic insulation at 300 V rms mains, 830 V rms (1174 V peak)		
	Reinforced insulation at 300 V rms		
	mains, 200 V secondary (283 V peak)		
File (pending)	File (pending)	File (pending)	File (pending)

Notes

 $^{^{1}}$ In accordance with UL 1577, each π 150x4/ π 151x4/ π 152x4 is proof tested by applying an insulation test voltage \geq 4800 V rms for 1 sec.

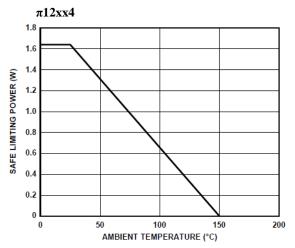
² In accordance with DIN V VDE V 0884-10, each π150x4/π151x4/π152x4 is proof tested by applying an insulation test voltage ≥ 1059 V peak for 1 sec (partial discharge detection limit = 5 pC). The * marking branded on the component designates DIN V VDE V 0884-10 approval.

¹ In accordance with UL 1577, each π 150x6/ π 151x6/ π 152x6 is proof tested by applying an insulation test voltage ≥ 7200 V rms for 1 sec.

² In accordance with DIN V VDE V 0884-10, each π 150x6/ π 151x6/ π 152x6 is proof tested by applying an insulation test voltage ≥ 1592 V peak for 1 sec (partial discharge detection limit = 5 pC). The * marking branded on the component designates DIN V VDE V 0884-10 approval.

DIN V VDE V 0884-10 (VDE V 0884-10) INSULATION CHARACTERISTICS

These isolators are suitable for reinforced electrical isolation only within the safety limit data. Protective circuits ensure the maintenance of the safety data. The \ast marking on packages denotes DIN V VDE V 0884-10 approval.


Table 8. π15xx4

Description	Test Conditions/Comments	Symbol	Characteristic	Unit
Installation Classification per DIN VDE 0110				
For Rated Mains Voltage ≤ 150 V rms			I to IV	
For Rated Mains Voltage ≤ 300 V rms			I to III	
For Rated Mains Voltage ≤ 400 V rms			I to III	
Climatic Classification			40/105/21	
Pollution Degree per DIN VDE 0110, Table 1			2	
Maximum Working Insulation Voltage		VIORM	565	V peak
Input to Output Test Voltage, Method B1	$V_{IORM} \times 1.875 = V_{pd (m)}$, 100% production test, tini = t_m = 1 sec, partial discharge < 5 pC	V _{pd} (m)	1059	V peak
Input to Output Test Voltage, Method A After				
Environmental Tests Subgroup 1	$V_{IORM} \times 1.5 = V_{pd (m)}$, $t_{ini} = 60$ sec, $t_m = 10$ sec, partial discharge < 5 pC	Vpd (m)	848	V peak
After Input and/or Safety Test Subgroup 2 and Subgroup 3	$V_{IORM} \times 1.2 = V_{pd (m)}$, $t_{ini} = 60$ sec, $t_m = 10$ sec, partial discharge < 5 pC		678	V peak
Highest Allowable Overvoltage		Vіотм	5656	V peak
Surge Isolation Voltage Basic	V peak = 10 kV, 1.2 μ s rise time, 50 μ s, 50% fall time	Viosm	4615	V peak
Safety Limiting Values	Maximum value allowed in the event of a failure (see Figure 3)			
Maximum Junction Temperature		Ts	150	°C
Total Power Dissipation at 25°C		Ps	1.64	w
Insulation Resistance at T _S	V _{IO} = 800 V	Rs	>10 ⁹	Ω

π15xx6

Description	Test Conditions/Comments	Symbol	Characteristic	Unit
Installation Classification per DIN VDE 0110				
For Rated Mains Voltage ≤ 150 V rms			I to IV	
For Rated Mains Voltage ≤ 300 V rms			I to IV	
For Rated Mains Voltage ≤ 600 V rms			I to III	
Climatic Classification			40/125/21	
Pollution Degree per DIN VDE 0110, Table 1			2	
Maximum Working Insulation Voltage		VIORM	849	V peak
Input to Output Test Voltage, Method B1	$V_{IORM} \times 1.875 = V_{pd (m)}$, 100% production test, tini = t_m = 1 sec, partial discharge < 5 pC	V _{pd} (m)	1592	V peak
Input to Output Test Voltage, Method A After				
Environmental Tests Subgroup 1	$V_{IORM} \times 1.5 = V_{pd (m)}$, $t_{ini} = 60$ sec, $t_m = 10$ sec, partial discharge < 5 pC	Vpd (m)	1274	V peak
After Input and/or Safety Test Subgroup 2 and Subgroup 3	$V_{IORM} \times 1.2 = V_{pd (m)}$, t_{ini} = 60 sec, t_m = 10 sec, partial discharge < 5 pC		1019	V peak

Highest Allowable Overvoltage		Vіотм	8484	V peak
Surge Isolation Voltage Basic	V peak = 10 kV, 1.2 μs rise time, 50 μs, 50%	VIOSM	7692	V peak
	fall time			
Surge Isolation Voltage Reinforced	V peak = 10 kV, 1.2 μs rise time, 50 μs, 50%	Viosm	10000	V peak
	fall time			
Safety Limiting Values	Maximum value allowed in the event of a			
	failure (see Figure 3)			
Maximum Junction Temperature		Ts	150	°C
Total Power Dissipation at 25°C		Ps	2.78	W
Insulation Resistance at T _S	V ₁₀ = 800 V	R_S	>10 ⁹	Ω

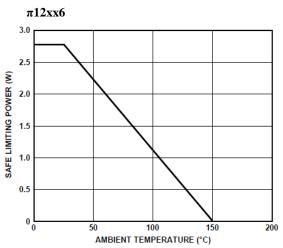


Figure 3. Thermal Derating Curve, Dependence of Safety Limiting Values with Ambient Temperature per DIN V VDE V 0884-10

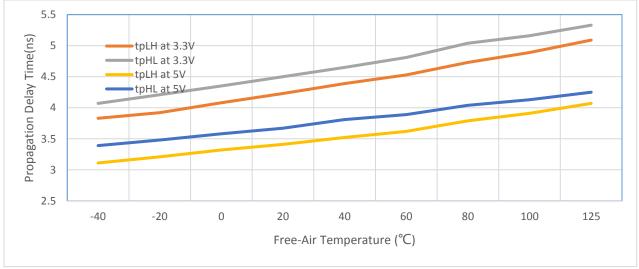


Figure Propagation Delay vs. Temperature at Various Voltages

ESD CAUTION

ESD (electrostatic discharge) sensitive device.

Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

ABSOLUTE MAXIMUM RATINGS

 $T_A = 25$ °C, unless otherwise noted.

Table 9.

Parameter	Rating
Supply Voltages (V _{DD1} , V _{DD2})	-0.5 V to +7.0 V
Input Voltages (V _{IA} , V _{IB}) ¹	-0.5 V to V _{DDI} + 0.5 V
Output Voltages (V _{OA} , V _{OB}) ²	-0.5 V to V _{DDO} + 0.5 V
Average Output Current per Pin ³	
Side 1 Output Current (I ₀₁)	−10 mA to +10 mA
Side 2 Output Current (I _{O2})	−10 mA to +10 mA
Common-Mode Transients ⁴	–150 kV/μs to +150 kV/μs
Storage Temperature (T _{ST}) Range	-65°C to +150°C
Ambient Operating Temperature	-40°C to +125°C
(T _A) Range	

Notes:

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

Table 10. Maximum Continuous Working Voltage¹

 $\pi 15xx4$

Parameter	Rating	Constraint ²
AC VOLTAGE		Lifetime limited by package creepage maximum approved working voltage per IEC 60950-1
Bipolar Waveform		
Basic Insulation	789 V peak	
Reinforced Insulation	403 V peak	
Unipolar Waveform		
Basic Insulation	909 V peak	
Reinforced Insulation	469 V peak	
DC VOLTAGE		Lifetime limited by package creepage maximum approved working voltage per IEC 60950-1
Basic Insulation	558 V peak	
Reinforced Insulation	285 V peak	

¹ V_{DDI} is the input side supply voltage.

² V_{DDO} is the output side supply voltage.

 $^{^{3}}$ See Figure 3 for the maximum rated current values for various temperatures.

⁴Common-mode transients refer to the common-mode transients across the insulation barrier. Common-mode transients exceeding the absolute maximum ratings may cause latch-up or permanent damage.

π15xx6

Parameter	Rating	Constraint ²
AC VOLTAGE		Lifetime limited by package creepage maximum approved working voltage per IEC 60950-1
Bipolar Waveform		
Basic Insulation	849 V peak	
Reinforced Insulation	819 V peak	
Unipolar Waveform		
Basic Insulation	1698 V peak	
Reinforced Insulation	943 V peak	
DC VOLTAGE		Lifetime limited by package creepage maximum approved working voltage per IEC 60950-1
Basic Insulation	1157 V peak	
Reinforced Insulation	579 V peak	

Notes:

Truth Tables

Table 11. $\pi 150/\pi 151/\pi 152$ Truth Table (Positive Logic)

			Default Low (N0),	Default High (N1),	
V _{Ix} Input ¹	V _{DDI} State ¹	V _{DDO} State ¹	Vox Output ^{1,2}	Vox Output ^{1,2}	Test Conditions/Comments
Low	Powered ³	Powered ³	Low	Low	Normal operation
High	Powered ³	Powered ³	High	High	Normal operation
Don't Care⁵	Unpowered⁴	Powered ³	Low	High	Fail-safe output
Don't Care ⁵	Powered ³	Unpowered ⁴	High Impedance	High Impedance	

Notes:

¹ Maximum continuous working voltage refers to the continuous voltage magnitude imposed across the isolation barrier. See the Insulation Lifetime section for more details.

 $^{^{\}rm 2}$ Insulation lifetime for the specified test condition is greater than 50 years.

¹ V_{Ix} and V_{Ox} refer to the input and output signals of a given channel (A, B, C, D or E). V_{DDI} and V_{DDO} refer to the supply voltages on the input and output sides of the given channel, respectively.

² NO is the $\pi150xx0/\pi151xx0/\pi152xx0$ models; N1 is the $\pi150xx1/\pi151xx1/\pi152xx1$ models. See the Ordering Guide.

³ Powered = Power Up (Vcc ≥ V_{DDxUV+}), Power Down (Vcc ≥ V_{DDxUV-}).

⁴ Unpowered = Power Up ($Vcc < V_{DDxUV+}$), Power Down ($Vcc < V_{DDxUV-}$).

⁵ Input pins (V_{Ix}) on the same side as an unpowered supply must be in a low state to avoid powering the device through its ESD protection circuitry.

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

			1	
V DD1	1		16	V _{DD2}
VIA	2	π150	15	Voa
VIB	3		14	Vов
Vıc	4		13	Voc
V ID	5	TOP VIEW	12	Vod
VIE	6	(Not to scale)	11	VOE
NC	7		10	NC
GND ₁	8		9	GND
				•

Figure 4. $\pi 150$ Pin Configuration

π 150 Pin Function Descriptions

	1150 I in Function Descriptions		
Pin No.	Mnemonic	Description	
1	V _{DD1}	Supply Voltage for Isolator Side 1.	
2	VIA	Logic Input A.	
3	V _{IB}	Logic Input B.	
4	Vic	Logic Input C.	
5	V _{ID}	Logic Input D.	
6	VIE	Logic Input E.	
7	NC	No connect.	
8	GND₁	Ground 1. This pin is the ground reference for Isolator Side 1.	
9	GND ₂	Ground 2. This pin is the ground reference for Isolator Side 2.	
10	NC	No connect.	
11	Voe	Logic Output E.	
12	Vod	Logic Output D.	
13	Voc	Logic Output C.	
14	Vов	Logic Output B.	
15	Voa	Logic Output A.	
16	V _{DD2}	Supply Voltage for Isolator Side 2.	

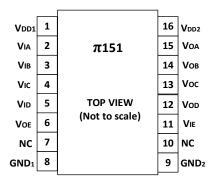


Figure 5. $\pi 151$ Pin Configuration

π 151 Pin Function Descriptions

Pin No.	Mnemonic	Description			
1	V _{DD1}	Supply Voltage for Isolator Side 1.			
2	VIA	Logic Input A.			
3	V _{IB}	Logic Input B.			
4	Vıc	Logic Input C.			
5	V _{ID}	Logic Input D.			
6	Voe	Logic Output E.			
7	NC	No connect.			
8	GND ₁	Ground 1. This pin is the ground reference for Isolator Side 1.			
9	GND ₂	Ground 2. This pin is the ground reference for Isolator Side 2.			
10	NC	No connect.			
11	VIE	Logic Input E.			
12	Vod	Logic Output D.			
13	Voc	Logic Output C.			
14	Vов	Logic Output B.			
15	VOA	Logic Output A.			
16	V _{DD2}	Supply Voltage for Isolator Side 2.			

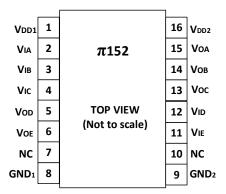


Figure 6. $\pi 152$ Pin Configuration

π 152 Pin Function Descriptions

Pin No.	Mnemonic	Description				
1	V _{DD1}	Supply Voltage for Isolator Side 1.				
2	VIA	Logic Input A.				
3	V _{IB}	Logic Input B.				
4	Vıc	Logic Input C.				
5	Vod	Logic Output D.				
6	Voe	Logic Output E.				
7	NC	No connect.				
8	GND ₁	Ground 1. This pin is the ground reference for Isolator Side 1.				
9	GND ₂	Ground 2. This pin is the ground reference for Isolator Side 2.				
10	NC	No connect.				
11	VIE	Logic Input E.				
12	VID	Logic Input D.				
13	Voc	Logic Output C.				
14	Vов	Logic Output B.				
15	Voa	Logic Output A.				
16	V _{DD2}	Supply Voltage for Isolator Side 2.				

APPLICATIONS INFORMATION

OVERVIEW

The $\pi 150/\pi 151/\pi 152$ transmit data across an isolation barrier by layers of silicon oxide isolation.

The $\pi 150/\pi 151/\pi 152$ have very low propagation delay and high speed. The input/output design techniques allow logic and supply voltages over a wide range from 3.0 V to 5.5 V, offering voltage translation of 3.3 V, and 5 V logic. The architecture is designed for high common-mode transient immunity and high immunity to electrical noise and magnetic interference.

See the Ordering Guide for the model numbers that have the fail-safe output state of low or the fail-safe output state of high.

PCB LAYOUT

The $\pi 150/\pi 151/\pi 152$ digital isolators require no external interface circuitry for the logic interfaces. Power supply bypassing is strongly recommended at the input and output supply pins (see Figure 7). Bypass capacitors are most conveniently connected between Pin 1 and Pin 4 for V_{DD1} and between Pin 5 and Pin 8 for V_{DD2} . The recommended bypass capacitor value is between 0.01 μF and 0.1 μF . The total lead length between both ends of the capacitor and the input power supply pin must not exceed 10 mm.

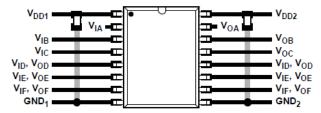


Figure 7. Recommended Printed Circuit Board Layout

In applications involving high common-mode transients, ensure that board coupling across the isolation barrier is minimized. Furthermore, design the board layout such that any coupling that does occur equally affects all pins on a given component side. Failure to ensure this can cause voltage differentials between pins exceeding the Absolute Maximum Ratings of the device, thereby leading to latch-up or permanent damage.

PROPAGATION DELAY RELATED PARAMETERS

Propagation delay is a parameter that describes the time it takes a logic signal to propagate through a component. The propagation delay to a Logic 0 output may differ from the propagation delay to a Logic 1 output.

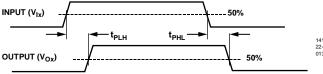


Figure 8. Propagation Delay Parameters

Pulse width distortion is the maximum difference between these two propagation delay values and is an indication of how accurately the timing of the input signal is preserved. Channel matching is the maximum amount the propagation delay differs between channels within a single $\pi 150/\pi 151/\pi 152$ component.

Propagation delay skew is the maximum amount the propagation delay differs between multiple $\pi 150/\pi 151/\pi 152$ components operating under the same conditions.

JITTER MEASUREMENT

Figure 9 shows the eye diagram for the $\pi 150/\pi 151/\pi 152$. The measurement was taken using an Keysight 81160A pulse pattern generator at 10 Mbps with pseudorandom bit sequences (PRBS) 2(n-1), n=14, for 5 V supplies. Jitter was measured with the Keysight DSOS104A oscilloscope, 1 GHz, 20 GS/s with the DPOJET jitter and eye diagram analysis tools. The result shows a typical measurement on the $\pi 150/\pi 151/\pi 152$ with 47 ps p-p jitter.

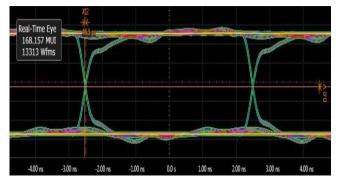


Figure 9. $\pi 150/\pi 151/\pi 152$ Eve Diagram

INSULATION LIFETIME

All insulation structures eventually break down when subjected to voltage stress over a sufficiently long period. The rate of insulation degradation is dependent on the characteristics of the voltage waveform applied across the insulation as well as on the materials and material interfaces.

The two types of insulation degradation of primary interest are breakdown along surfaces exposed to the air and insulation wear out. Surface breakdown is the phenomenon of surface tracking and the primary determinant of surface creepage requirements in system level standards. Insulation wear out is the phenomenon where charge injection or displacement currents inside the insulation material cause long-term insulation degradation.

Surface Tracking

Surface tracking is addressed in electrical safety standards by setting a minimum surface creepage based on the working voltage, the environmental conditions, and the properties of the insulation material. Safety agencies perform characterization testing on the surface insulation of components that allows the components to be categorized in different material groups. Lower material group ratings are more resistant to surface tracking and, therefore, can provide adequate lifetime with smaller creepage. The minimum creepage for a given working voltage and material

group is in each system level standard and is based on the total rms voltage across the isolation, pollution degree, and material group. The material group and creepage for the $\pi 150/\pi 151/\pi 152$ isolators are presented in Table 5.

Insulation Wear Out

The lifetime of insulation caused by wear out is determined by its thickness, material properties, and the voltage stress applied. It is important to verify that the product lifetime is adequate at the application working voltage. The working voltage supported by an isolator for wear out may not be the same as the working voltage supported for tracking. It is the working voltage applicable to tracking that is specified in most standards.

Testing and modeling show that the primary driver of long term degradation is displacement current in the silicon oxide insulation causing incremental damage. The stress on the insulation can be broken down into broad categories, such as dc stress, which causes very little wear out because there is no displacement current, and an ac component time varying voltage stress, which causes wear out.

The ratings in certification documents are usually based on 60 Hz sinusoidal stress because this reflects isolation from line voltage. However, many practical applications have combinations of 60 Hz ac and dc across the barrier as shown in Equation 1. Because only the ac portion of the stress causes wear out, the equation can be rearranged to solve for the ac rms voltage, as is shown in Equation 2. For insulation wear out with the silicon oxide materials used in these products, the ac rms voltage determines the product lifetime.

$$V_{RMS} = \sqrt{V_{AC RMS}^2 + V_{DC}^2} \tag{1}$$

or

$$V_{ACRMS} = \sqrt{V_{RMS}^2 - V_{DC}^2}$$
 (2)

where:

 V_{RMS} is the total rms working voltage.

 $V_{AC\ RMS}$ is the time varying portion of the working voltage.

 V_{DC} is the dc offset of the working voltage.

Calculation and Use of Parameters Example

The following example frequently arises in power conversion applications. Assume that the line voltage on one side of the isolation is 240 $V_{\text{AC RMS}}$ and a 400 V_{DC} bus voltage is present on the other side of the isolation barrier. The isolator material is polyimide. To establish the critical voltages in determining the

creepage, clearance, and lifetime of a device, see Figure 10 and the following equations.

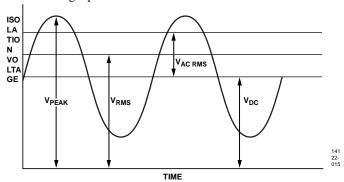


Figure 10. Critical Voltage Example

The working voltage across the barrier from Equation 1 is

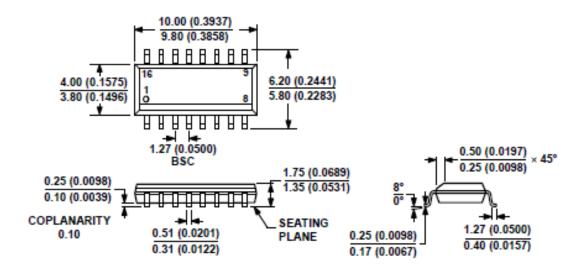
$$V_{RMS} = \sqrt{{V_{AC~RMS}}^2 + {V_{DC}}^2}$$

$$V_{RMS} = \sqrt{240^2 + 400^2}$$

$$V_{RMS} = 466 \text{ V}$$

This is the working voltage used together with the material group and pollution degree when looking up the creepage required by a system standard.

To determine if the lifetime is adequate, obtain the time varying portion of the working voltage. To obtain the ac rms voltage, use Equation 2.


$$V_{AC\,RMS} = \sqrt{{V_{RMS}}^2 - {V_{DC}}^2}$$

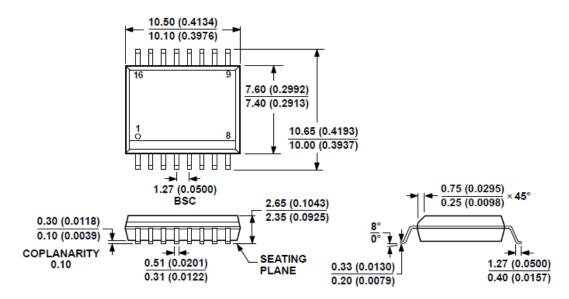
$$V_{AC\,RMS} = \sqrt{466^2 - 400^2}$$

 $V_{ACRMS} = 240 \text{ V rms}$

In this case, the ac rms voltage is simply the line voltage of 240 V rms. This calculation is more relevant when the waveform is not sinusoidal. The value is compared to the limits for working voltage in Table 10 for the expected lifetime, less than a 60 Hz sine wave, and it is well within the limit for a 50-year service life.

Note that the dc working voltage limit in Table 10 is set by the creepage of the package as specified in IEC 60664-1. This value can differ for specific system level standards.

OUTLINE DIMENSIONS

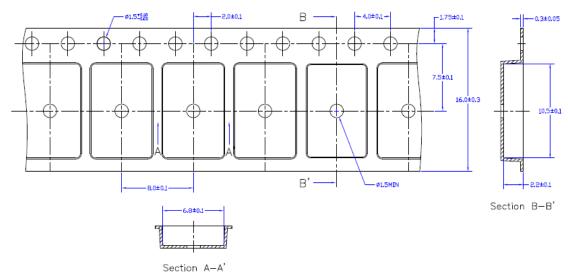

COMPLIANT TO JEDEC STANDARDS MS-012-AC

CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.

Figure 11. 16-Lead Standard Small Outline Package [SOIC_N]

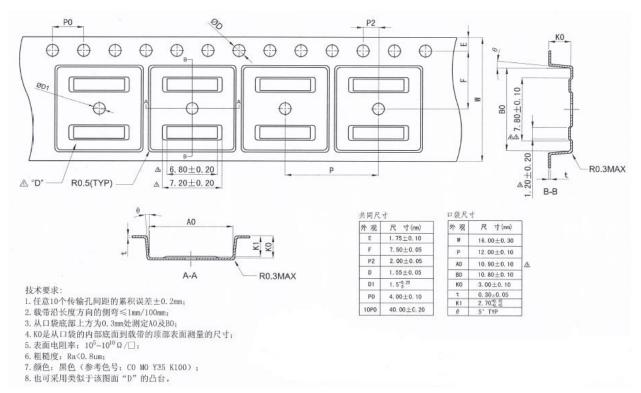
N/Arrow Body (S-16-N)

Dimensions shown in millimeters and (inches)



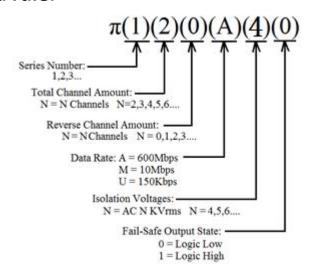
COMPLIANT TO JEDEC STANDARDS MS-013-AA
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.

Figure 12. 16-Lead Standard Small Outline Package [SOIC_W]
Wide Body (S-16-W)
Dimensions shown in millimeters and (inches)


REEL INFORMATION

S-16-N

- 1.10 procket hole pitch cumulative tolerance ± 0.2
- 2.Carrier camber is within 1mm in 100mm 3.MATERIAL:PS Black Tape
- 4.ALL DIMS IN MM
- 5. There must not be foreign body adhesion and the state of the surface must be excellent
- 6.22"Reel, 48125 pockets (385m)
- 7.Surface resistance 1X10E5<Rs<1X10E9 OHMS/SQ


S-16-W

ORDERING GUIDE

Model	Temperature Range	No. of Inputs, V _{DD1} Side	No. of Inputs, V _{DD2} Side	Withstand Voltage Rating (kV rms)	Fail-Safe Output State	Package Description	Package Option	Quantity
π150A41	-40°C to +125°C	5	0	4	High	16-Lead SOIC_N	S-16-N	4000 per reel
π150A40	-40°C to +125°C	5	0	4	Low	16-Lead SOIC_N	S-16-N	4000 per reel
π151Α41	-40°C to +125°C	4	1	4	High	16-Lead SOIC_N	S-16-N	4000 per reel
π151Α40	-40°C to +125°C	4	1	4	Low	16-Lead SOIC_N	S-16-N	4000 per reel
π152A41	-40°C to +125°C	3	2	4	High	16-Lead SOIC_N	S-16-N	4000 per reel
π152A40	-40°C to +125°C	3	2	4	Low	16-Lead SOIC_N	S-16-N	4000 per reel
π150M41	-40°C to +125°C	5	0	4	High	16-Lead SOIC_N	S-16-N	4000 per reel
π150M40	-40°C to +125°C	5	0	4	Low	16-Lead SOIC_N	S-16-N	4000 per reel
π151M41	-40°C to +125°C	4	1	4	High	16-Lead SOIC_N	S-16-N	4000 per reel
π151M40	-40°C to +125°C	4	1	4	Low	16-Lead SOIC_N	S-16-N	4000 per reel
π152M41	-40°C to +125°C	3	2	4	High	16-Lead SOIC_N	S-16-N	4000 per reel
π152M40	-40°C to +125°C	3	2	4	Low	16-Lead SOIC_N	S-16-N	4000 per reel
π150U41	-40°C to +125°C	5	0	4	High	16-Lead SOIC_N	S-16-N	4000 per reel
π150U40	-40°C to +125°C	5	0	4	Low	16-Lead SOIC_N	S-16-N	4000 per reel
π151U41	-40°C to +125°C	4	1	4	High	16-Lead SOIC_N	S-16-N	4000 per reel
π151U40	-40°C to +125°C	4	1	4	Low	16-Lead SOIC_N	S-16-N	4000 per reel
π152U41	-40°C to +125°C	3	2	4	High	16-Lead SOIC_N	S-16-N	4000 per reel
π152U40	-40°C to +125°C	3	2	4	Low	16-Lead SOIC_N	S-16-N	4000 per reel
π150A61	-40°C to +125°C	5	0	6	High	16-Lead SOIC_W	S-16-W	1500 per reel
π150Α60	-40°C to +125°C	5	0	6	Low	16-Lead SOIC_W	S-16-W	1500 per reel
π151Α61	-40°C to +125°C	4	1	6	High	16-Lead SOIC_W	S-16-W	1500 per reel
π151Α60	-40°C to +125°C	4	1	6	Low	16-Lead SOIC_W	S-16-W	1500 per reel
π152A61	-40°C to +125°C	3	2	6	High	16-Lead SOIC_W	S-16-W	1500 per reel
π152A60	-40°C to +125°C	3	2	6	Low	16-Lead SOIC_W	S-16-W	1500 per reel
π150M61	-40°C to +125°C	5	0	6	High	16-Lead SOIC_W	S-16-W	1500 per reel
π150M60	-40°C to +125°C	5	0	6	Low	16-Lead SOIC_W	S-16-W	1500 per reel
π151M61	-40°C to +125°C	4	1	6	High	16-Lead SOIC_W	S-16-W	1500 per reel
π151M60	-40°C to +125°C	4	1	6	Low	16-Lead SOIC_W	S-16-W	1500 per reel
π152M61	-40°C to +125°C	3	2	6	High	16-Lead SOIC_W	S-16-W	1500 per reel
π152M60	-40°C to +125°C	3	2	6	Low	16-Lead SOIC_W	S-16-W	1500 per reel
π150U61	-40°C to +125°C	5	0	6	High	16-Lead SOIC_W	S-16-W	1500 per reel
π150U60	-40°C to +125°C	5	0	6	Low	16-Lead SOIC_W	S-16-W	1500 per reel
π151U61	-40°C to +125°C	4	1	6	High	16-Lead SOIC_W	S-16-W	1500 per reel
π151U60	-40°C to +125°C	4	1	6	Low	16-Lead SOIC_W	S-16-W	1500 per reel
π152U61	-40°C to +125°C	3	2	6	High	16-Lead SOIC_W	S-16-W	1500 per reel
π152U60	-40°C to +125°C	3	2	6	Low	16-Lead SOIC_W	S-16-W	1500 per reel

Part number named rule:

