

Low Power, 3.0kV rms/6.0 kV rms Dual I²C Isolators

Data Sheet $\pi 220/\pi 221$

FEATURES

Bidirectional I²C communication Supports up to 2 MHz operation

Open-drain interfaces

Side 1 outputs with 3.5 mA sink current

Side 2 outputs with 35 mA sink current

3.0V to 5.5V supply/logic levels

High common-mode transient immunity: 75 kV/μs typical

Isolation voltages:

 π 220N/221N: AC 3000Vrms π 220W/221W: AC 6000Vrms

Safety and regulatory approvals(Pending):

UL recognition:

3000Vrms/6000Vrms for 1 minute per UL 1577

CSA Component Acceptance Notice 5A

VDE certificate of conformity:

DIN V VDE V 0884-10 (VDE V 0884-10):2006-12

V_{IORM} = 565V peak/849V peak

CQC certification per GB4943.1-2011

AEC-Q100 (Pending)

Wide temperature range: -40°C to 125°C 8/16-lead, RoHS-compliant, (W)SOIC package

APPLICATIONS

Isolated I²C, SMBus, PMBus interfaces

Multilevel I²C interfaces

Electric and Hybrid-Electric Vehicles

Open-Drain Networks

I²C Level Shifting

Power supplies

GENERAL DESCRIPTION

The $\pi 220(N;W)/\pi 221(N;W)$ devices are low-power bidirectional isolators compatible with the I²C interface and are based on iDivider technology from 2PaiSemi. These devices have logic input and output buffers that are separated by using a silicon dioxide (SiO₂) barrier. These devices block high voltages and prevent noise currents from entering the control side ground, avoiding circuit interference and damaging sensitive components.

The $\pi 220(N;W)/\pi 221(N;W)$ devices are based on iDivider technology with functional, performance, size, and power consumption advantages as compared to optocouplers.

The $\pi 220(N;W)$ provides two bidirectional channels, supporting a complete isolated I²C interface. The $\pi 221(N;W)$ provides one bidirectional channel and one unidirectional channel for applications where a bidirectional clock is not required. The $\pi 221(N;W)$

is used in applications that have a single master while the $\pi 220(N;W)$ is suitable for multi-master applications.

These devices feature independent 3.0V to 5.5V supplies on each side of the isolator. These devices operate from DC to 2MHz at ambient temperatures of -40° C to $+125^{\circ}$ C.

FUNCTIONAL BLOCK DIAGRAMS

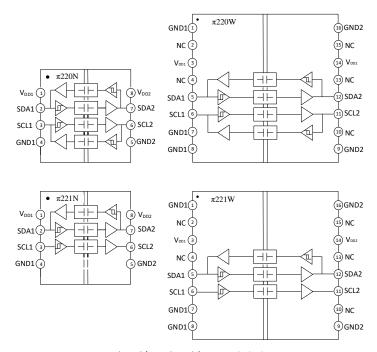


Figure 1. π 220(N;W)/ π 221(N;W) functional Block Diagram

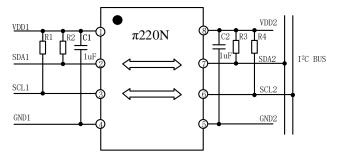


Figure 2. π220N Typical Application Circuit

Data Sheet $\pi 220N/\pi 221N$